falmec

FUSION

Version

Wall 85 cm - satin black - 800 m3/h

Collection

Design

Code EAN

8034122366241

Photo indicative/non contractuelle. Peut ne pas correspondre à la version du produit sélectionné.

CARACTERISTIQUES

Commandes sensitives Filtres à graisse métalliques

lavables

Télécommande en option Eclairage LED dimmable

Lumière Dynamique LED (2700K

- 5600K)

Dialogue system

Filtre Carbon.Zeo Microtech (en option)

Availability Carbon.Zeo filter KACL.1039 for hoods produced from Sept. 2024

ACCESSOIRES EN OPTION

105080053

Commande à distance (en option)

FA-KACL865

Déflecteur d'air pour installation en recyclage - mural

KACL.1039

FILTRE CHARBON ZEO

MICROTECH

KCQAN.00#N

Extension de cheminée (partie haute + partie basse) 78cm en inox noir

CARACTERISTIQUES TECHNIQUES

Туре

Mural

Dimensions

85 cm

Finition

Acier peint

Verre mat noir

Moteur

800 m³/h

Type de commande

Commandes sensitives

Commande de vitesse

3 + boost Eclairage

Strip Led 5,8 W - 2700 K / 5600

K

Distance minimal

Cuisson à gaz: 52 cm Taque électrique: 52 cm

EMBALLAGE: POIDS ET VOLUME

Poids brut

30 kg

Poids net

25 kg

Volume

0.27 m³

Taille de l'embalage

Longeur

950 mm

Hauteur

440 mm

Profondeur

655 mm

CARACTÉRISTIQUES DE CONSOMMATION ET DE CONNEXION

Consomation maximale

280 W

220-240V

Fréquence 50-60Hz

CLASSE ENERGETIQUE

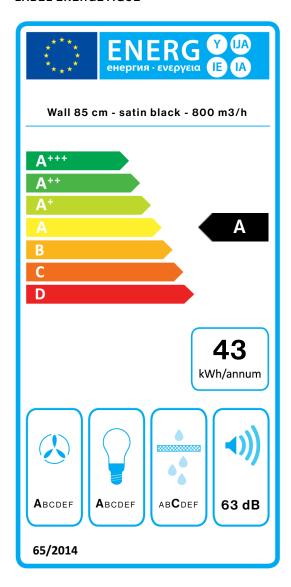
Α

falmec

FUSION

Version

Wall 85 cm - satin black - 800 m3/h


Collection

Design

Code EAN

8034122366241

LABEL ENERGETIQUE

PF		
s	Falmec Spa	
M	Wall 85 cm - satin black - 800 m3/h	
AEC	43,4	kWh/a
EEC	Α	
FDE	33,3	
FDEC	Α	
LE	29,6	
LEC	Α	
GFE	82,0	
GFEC	С	
Qmin	299,0	m³/h
Qmax	584,0	m³/h
Qboost	708,0	m³/h
SPEmin	49	dBa
SPEmax	63	dBa
SPEboost	67	dBa
PO	-	W
PS	0,28	w
PI		
F	0.8	
EEI	47,1	
Qbep	429,0	m³/h
Pbep	375	Pa
Qboost	708,0	m³/h
Wbep	134,0	w
WL	5,80	w
Emiddle	172	lux
Lwa-SPEmax	63	dBa

PF_Fiche produit conformément à 65/2014 S_Nom du fournisseur / M_Identification du modèle / AEC_Consommation annuelle d'énergie (Hotte AEC) / EEC_Classe d'efficacité énergétique / FDE_Efficacité de la dynamique des fluides (Hotte FDE) / FDEC_Classe d'efficacité de la dynamique des fluides / LE_Efficacité de l'éclairage (Hotte LE) / LEC_Classe d'efficacité de l'éclairage / GFE_Efficacité de filtrage de la graisse / GFEC_Grease Filtering Efficiency class / Qmin_Débit de l'air (en m³/h) à la vitesse min. lors de l'utilisation normale / Qmax_Débit de l'air (en m³/h) à la vitesse max. lors de l'utilisation normale / Qboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A (en dB) en réglage intensif ou de suralimentation / SPEmin_Émissions dans l'atmosphère de la puissance sonore pondérée par A à la vitesse max. lors de l'utilisation normale / SPEboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A à la vitesse max. lors de l'utilisation normale / SPEboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A (en dB) en réglage intensif ou de suralimentation / P0_Consommation de puissance en mode off [éteint] (Po) / Ps_Consommation de puissance en mode stand-by [pause] (Ps) . Pl_Informations complémentaires selon 66/2014 F_Facteur d'augmentation du temps / EEl_Index efficacité énergétique / Qbep_Débit de l'air mesuré au point d'efficacité maximale / Pbep_Pression de l'air mesurée au point

d'efficacité maximale / Qboost_Débit de l'air maximal / Wbep_Entrée de la puissance électrique mesurée au point d'efficacité maximale / WL_Puissance nominale du système d'éclairage / Emiddle_Éclairage moyen du système d'éclairage sur la surface de cuisson / Lwa=SPEmax_Niveau de pression sonore à la vitesse la plus élevée.