SINTESI

Version

SINTESI3420 - 90 cm - Noir -600 m3/h (131945)

Collection

Systèmes de cuisson intégrés

Code EAN

8034122900278

CARACTÉRISTIQUES

4 zones de cuisson avec détection automatique des casseroles

Indicateur de chaleur résiduelle Fonction maintien au chaud

(44°)

9 puissances de cuisson + 1

booster

Détection automatique des

casseroles

Timer / minuteur

Fonctions de sécurité: arrêt ou

verrouillage

Fonction pause

Flex Surface technology Double bridge (double foyer

extensible)

Minuteur avec arrêt

automatique

Gestion de puissance sur 3

niveau: 2,8kW, 3,5kW ou 7,4kW

Moteur Brushless

Commandes tactiles

Alerte de saturation du filtre

Charbon.Zeo / filtre en acier

Fonctionne en évacuation ou en recyclage (avec un kit de recyclage en option)

ACCESSOIRES EN OPTION

120867

FILDOWN4421 - Kit recyclage charbon-zéolite 10cm

121291

FILTREDOWND - Filtre pour remplacement dans le kit 131257

130117

FILTR60 - Kit recyclage charbon slim (h60mm)

130147

KACLK60 - Filtre charbon slim 6cm pour remplacement

KACL.955 - Grille d'évacuation pour filtre slim (h60mm)

Photo indicative/non contractuelle. Peut ne pas correspondre à la version du produit sélectionné.

EMBALLAGE: POIDS ET DIMENSIONS

Poids brut 35.2 kg Poids net 28.8 kg Volume

CARACTÉRISTIQUES

Type d'installation

TECHNIQUES

Plan de travail

Verre noir Schott

Type de contrôle

Réglages vitesse

Cadre finition inox noir

Commandes sensitives

Dimensions

88 cm

Finition

Moteur

600 m³/h

9 + boost

0.28 m³ Dimensions emballage

Longueur 980 mm Hauteur 385 mm Profondeur 780 mm

Consommation et caractéristiques de connexion Consommation maximale

7560 W Courant 220-240V Fréquence 50-60Hz

FICHE TECHNIQUE MOTEUR Capacité maximale

520 m³/h I.E.C. 61591 **Bruit maximal** 69 dB(A)re1pW I.E.C.60704-2-13 Pression maximale (Pa)

620 Pa

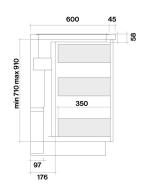
Puissance moteur maximale

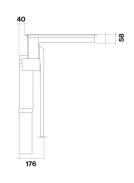
150 W

Classe énergétique A++

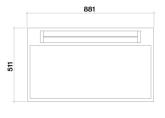
SINTESI

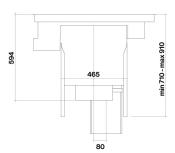
Version

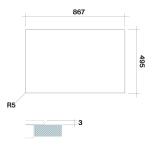

SINTESI3420 - 90 cm - Noir - 600 m3/h (131945)

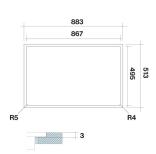

Collection

Systèmes de cuisson intégrés


Code EAN


8034122900278





Vue de côté

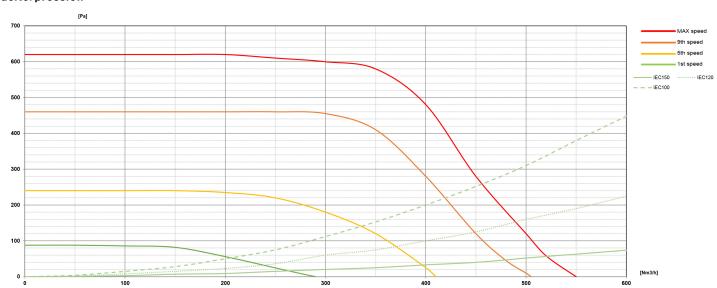
SINTESI

Version

SINTESI3420 - 90 cm - Noir - 600 m3/h (131945)

Collection

Systèmes de cuisson intégrés


Code EAN

8034122900278

Fiche technique moteur

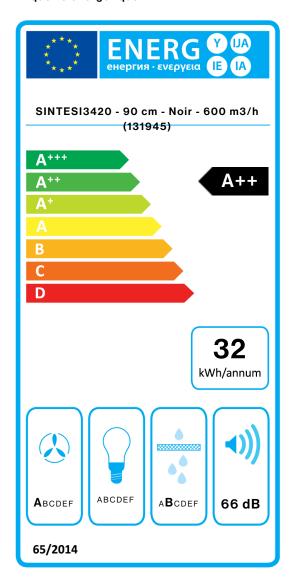
Vitesse moteur	1	5	9	10
Bruit dB(A)re1pW- I.E.C.60704-2-13	48	-	66	69
Capacité (m3/h) I.E.C.61591	260	395	480	520
Pression maximale (Pa)	85	240	460	620
Puissance (W)	13	41	99	150
Ventilation	220x90	220x90	220x90	220x90

Capacité/pression

SINTESI

Version

SINTESI3420 - 90 cm - Noir - 600 m3/h (131945)


Collection

Systèmes de cuisson intégrés

Code EAN

8034122900278

Etiquette énergétique

PF					
s	Falmec Spa				
M	SINTES13420 - 90 cm - Noir - 600 m3/h (131945)				
AEC	31,5	kWh/a			
EEC	A++				
FDE	37,7				
FDEC	A				
LE	0,0				
LEC					
GFE	87,0				
GFEC	В				
Qmin	260,0	m³/h			
Qmax	480,0	m³/h			
Qboost	520,0	m³/h			
SPEmin	48	dBa			
SPEmax	66	dBa			
SPEboost	69	dBa			
PO	-	w			
PS	0,48	w			
	PI				
F	0.6				
EEI	33,3				
Qbep	312,0	m³/h			
Pbep	627	Pa			
Qboost	520,0	m³/h			
Wbep	144,0	w			
WL	0,00	w			
Emiddle	0	lux			
Lwa-SPEmax	66	dBa			

PF_Fiche produit conformément à 65/2014 S_Nom du fournisseur / M_Identification du modèle / AEC_Consommation annuelle d'énergie (Hotte AEC) / EEC_Classe d'efficacité énergétique / FDE_Efficacité de la dynamique des fluides (Hotte FDE) / FDEC_Classe d'efficacité de la dynamique des fluides / LE_Efficacité de l'éclairage (Hotte LE) / LEC_Classe d'efficacité de l'éclairage / GFE_Efficacité de filtrage de la graisse / GFEC_Grease Filtering Efficiency class / Qmin_Débit de l'air (en m³/h) à la vitesse min. lors de l'utilisation normale / Qmax_Débit de l'air (en m³/h) à la vitesse max. lors de l'utilisation normale / Qboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A (en dB) en réglage intensif ou de suralimentation / SPEmin_Émissions dans l'atmosphère de la puissance sonore pondérée par A à la vitesse max. lors de l'utilisation normale / SPEboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A à la vitesse max. lors de l'utilisation normale / SPEboost_Émissions dans l'atmosphère de la puissance sonore pondérée par A (en dB) en réglage intensif ou de suralimentation / PO_Consommation de puissance en mode off [éteint] (Po) / Ps_Consommation de puissance en mode stand-by [pause] (Ps) . Pl_Informations supplémentaires conformément à 66/2014 F_Facteur d'augmentation du temps / EEl_Index efficacité énergétique / Qbep_Débit de l'air mesuré au point d'efficacité maximale / Pbep_Pression de l'air

mesurée au point d'efficacité maximale / Qboost_Débit de l'air maximal / Wbep_Entrée de la puissance électrique mesurée au point d'efficacité maximale / WL_Puissance nominale du système d'éclairage / Emiddle_Éclairage moyen du système d'éclairage sur la surface de cuisson / Lwa=SPEmax_Niveau de pression sonore à la vitesse la plus élevée.	